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[1] Using GPS observations from 1996 to 2011, we
constrain postglacial rebound in Antarctica. Sites in the
Ellsworth mountains, West Antarctica, are rising at ≈5 ±
4 mm/yr (95% confidence limits), as in the postglacial
rebound model of Peltier, but ≈10 mm/yr slower than in
the model of Ivins and James. Therefore significant ice
loss from the Ellsworth mountains ended by 4 ka, and
current ice loss there is less than inferred from GRACE
gravity observations in studies assuming the model of Ivins
and James. Three sites along the coast of East Antarctica
are rising at 3 to 4 ± 2 mm/yr, in viscous response to
Holocene unloading of ice along the Queen Maud Land
coast and elsewhere. Kerguelen island and seven sites along
the coast of East Antarctic are part of a rigid Antarctica
plate. O’Higgins, northern Antarctic peninsula, is moving
southeast at 2.3 ± 0.6 mm/yr relative to the Antarctic plate.
Citation: Argus, D. F., G. Blewitt, W. R. Peltier, and C. Kreemer
(2011), Rise of the Ellsworthmountains and parts of the East Antarc-
tic coast observed with GPS, Geophys. Res. Lett., 38, L16303,
doi:10.1029/2011GL048025.

1. Introduction

[2] Antarctica’s viscous response to late Pleistocene
unloading of ice is poorly constrained because there are few
Holocene relative sea level histories available [e.g., Bassett
et al., 2007]. Hence estimates of the contribution of Antarc-
tic ice loss to Holocene global sea level rise vary greatly: 10m
[Ivins and James, 2005], 14 m [Denton and Hughes, 2002],
18 m (ICE‐5G v1.3a [Peltier, 2007]), and 37 m [Nakada and
Lambeck, 1988].
[3] Geological observations constrain the start of signifi-

cant Antarctic deglaciation to be after 14.2 ka, the time of
Meltwater Pulse 1A [Bentley et al., 2010]. Radiocarbon
dating of sediment cores shows that marine sedimentation
beneath the Larsen B ice shelf began at 10.5 ka [Domack
et al., 2005]; radiocarbon dating shows that deposition of
varved sediments on calving bay reentrants along the East
Antarctic coast began at 11 ka [Leventer et al., 2006]. The
observation that relative sea level on tropical Pacific islands
was at a 2 m high stand at 4 ka requires ice sheet loss from
Antarctic and elsewhere to have ended by 4 ka [Peltier et al.,
2002]. Mackintosh et al. [2011] find that ice loss from Mac
Robertson Land, East Antarctica, started slowly at 14 ka,

increased greatly at ≈12 ka, and ended by 7 ka. In ICE‐5G
v1.3a [Peltier, 2007] Antarctic ice loss begins abruptly at
11.5 ka, the time of Meltwater Pulse 1B [Peltier and
Fairbanks, 2006], and ends at 4 ka.
[4] In this study we evaluate the fit of two postglacial

rebound models to space geodetic estimates of uplift of solid
Earth’s surface (Figure 1). The model of Peltier [2007] is
based on deglaciation history ICE‐5G v1.3a and mantle vis-
cosity profile VM2 and has an elastic lithosphere 90 km thick.
The model of Simon et al. [2010] is based on deglaciation
history IJ05 [Ivins and James, 2005] and a three‐layer
mantle viscosity profile and also has an elastic lithosphere
90 km thick. Because postglacial rebound of West Antarctica
depends mostly on the viscosity of the upper mantle (see
Fréchet kernels in Figure 5 of Peltier [2004], with West
Antarctica being about the same size as Fennoscandia), and
because the mean upper mantle viscosity is nearly equal in the
models of Peltier [2007] and Simon et al. [2010], differences
between the predictions of the two models are due mainly to
differences in deglaciation history. Argus and Peltier [2010]
assess the fit of the model of Peltier [2007] to space geodetic
observations.
[5] In Antarctica the model of Peltier [2007] predicts

current uplift to have three local maxima: (Figure 2a, R)
10 mm/yr in the southern Antarctic peninsula, (S) 10 mm/yr
along the southern margin of the Ronne ice shelf, and
(T) 14 mm/yr along the southeast margin of Ross ice shelf.
The model of Simon et al. [2010], which is nearly identical to
that of Ivins and James [2005], predicts current uplift to be a
maximum of (Figure 2b, U) 20 mm/yr in the southern Ant-
arctic peninsula. Herein we find that sites in the Ellsworth
mountains are rising at ≈5 ± 4 mm/yr (95% confidence
limits), as in the model of Peltier [2007], but ≈10 mm/yr
slower than in the model of Simon et al. [2010].

2. Data and Methods

[6] From GPS observations we estimate position‐time
series from 1996 to 2011 (Text S1 in the auxiliary material).1

Eleven permanent GPS sites along the Antarctic coast have
8 to 15 yr of data [Dow et al., 2009], yielding tight velocity
estimates (Figure S1). Scientists established the (WAGN)
West Antarctic Campaign Network in four consecutive
summers beginning in January 2002; at six sites Bevis et al.
[2009] placed a permanent (ANET) Antarctic NETwork
GPS receiver at the WAGNmark, allowing us to estimate the
velocity of each site without solving for an offset (Figure S2).
[7] Following the method of Argus et al. [2010] we invert

estimates of velocity from GPS, VLBI, SLR, and DORIS for
the velocity of Earth’s center and the velocity of the plates.
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Velocity models for VLBI, SLR, and DORIS are identical to
those of Argus et al. [2010].

3. Results

3.1. Earth’s Center

[8] The velocity of Earth’s center transforms 1 to 1 into all
estimates of site velocity [Argus et al., 1999]. Herein we
define Earth’s center to be (CE) the mass center of solid
Earth and simultaneously estimate the velocity of CE
assuming that, besides plate motion, the parts of the plates
not near the late Pleistocene ice sheets are moving negligibly
in the horizontal relative to CE [Argus, 2007; Argus et al.,
2010]. (Kogan and Steblov [2008] do so also, but describe
the definition of Earth’s center differently.) We minimize
the sum of the squares of the weighted differences between
the observed and predicted horizontal site velocities. The
horizontal components of site velocity constrain the velocity
of CE because changing the velocity of CE changes the
horizontal component of site velocity by a different amount
at different places and, if the velocity of CE were wrong,
then the plates would appear to be deforming. (Blewitt

Figure 1. (a) Antarctic ice loss as a function of time in
models ICE‐5G v1.3a [Peltier, 2007] and IJ05 [Ivins and
James, 2005]. The contribution to global sea level rise in
m is given along the right‐hand axis. (b) Mantle viscosity as
a function of depth in models VM2 [Peltier, 2004], the
model of Simon et al. [2010], and models VM2–1 and
VM2–2 [Paulson et al., 2007].

Figure 2. Observations of uplift (vertical blue bars) and
subsidence (vertical red bars) are compared to the predic-
tions of the postglacial rebound models of (a) Peltier
[2007] and (b) Simon et al. [2010]. Observed vertical rates
are given (in black) in mm/yr; error bars are 95% confidence
limits; the (small blue) ‘X’s are the model predictions;
predicted uplift rates are given (in light blue) where they
exceed observed rates by more than 5 mm/yr. The color
gradations show, as the legend specifies, the model predic-
tions. The uplift maxima of Peltier [2007] are shown (in red)
as ‘R’, ‘S’, and ‘T’; the uplift maximum of Simon et al.
[2010] is shown (in red) as ‘U’. (c) Observations of uplift
and subsidence as a function of distance along profile A–A′
are compared to the predictions of the postglacial rebound
models of (blue) Peltier [2007] and (red) Simon et al.
[2010].
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[2003] defines this constraint to be the (CL) center of lateral
movement of Earth’s surface.) We maintain that no phe-
nomenon can sustain a significant velocity between CE and
the (CM) center of mass of solid Earth, oceans, and atmo-
sphere [Argus, 2007; Argus et al., 2010, Appendix A]. The
inversion yields estimates of vertical motion that do not
depend on a postglacial rebound model.
[9] The velocity of CE that we estimate is nearly identical

to the velocity that Argus et al. [2010] estimate in an
identical manner (Figure S3). But our estimate of the
velocity of CE differs from the velocity of CM in ITRF2008
[Altamimi et al., 2011] along Z by 1.1 mm/yr. Therefore our
estimates of vertical rates in Antarctic have 1.0 mm/yr more
uplift than do those in ITRF2008 (Figure S4).

3.2. Vertical

[10] Five sites in the Ellsworth mountains (sugg, haag,
hown, w07, and w05) are rising at ≈5 mm/yr, consistent
with the uplift predicted by the model of Peltier [2007], but
a significant 5–12 mm/yr slower than predicted by the
model of Simon et al. [2010] (Figure 2 and Table S1). We
infer that significant ice loss from the Ellsworth mountains
ended by 4 ka, as in the model of Peltier [2007]. If there
were current ice loss from the Ellsworth mountains, then the
disagreement with the model of Simon et al. [2010] would
increase.
[11] Three sites along the East Antarctica coast (Vesles-

karvet, Syowa, and Casey) are rising at 3–4 ± 2 mm/yr, in
viscous response to Holocene unloading of ice. GRACE
gravity observations near the three sites suggest current ice
loss to be small [Chen et al., 2009; Horwath and Dietrich,
2009]. We infer that there was more ice in these places at
11.5 ka than in ICE‐5G.
[12] O’Higgins, in the northern Antarctic peninsula, is

rising at 5.7 ± 1.3 mm/yr, 3 mm/yr faster than predicted by the
model of Peltier [2007]. Palmer is rising at 6.0 ± 2.2 mm/yr,
3 mm/yr faster than the prediction. From GRACE gravity
observations Peltier [2009] infers there to be current ice

loss from the northern Antarctic peninsula, which would
produce uplift that lessens the difference between the GPS
observation and the postglacial rebound prediction. Frei is,
however, falling at 3.4 ± 2.8 mm/yr, bringing some doubt
to that interpretation.

3.3. Horizontal

[13] Kerguelen island and seven sites along the East
Antarctic coast (Vesleskarvet, Syowa, Mawson, Davis, Casey,
Dumont D’ Urville, and McMurdo) are moving as part of the
rigid Antarctic plate (Figure 3). The weighted root mean
square of the eight residual speeds is 0.5 mm/yr.
[14] O’Higgins, along the northern coast of the Antarctic

peninsula, is moving relative to the Antarctic plate southeast
at 2.3 ± 0.6 mm/yr (95% confidence limits). This direction is
opposite that expected due to current or Holocene ice loss
from the peninsula. O’Higgins is 110 km south of Bransfield
basin, the continental rift between the Antarctic and Shet-
land plates [Bird, 2003], far enough for the site to be on the
Antarctic plate. Palmer is moving relative to the Antarctic
plate south at 1.8 ± 1.0 mm/yr.
[15] Frei, on the Shetland plate just north of Bransfield

basin, is moving relative to the Antarctic plate northwest at
6.5 ± 1.3 mm/yr, consistent with the observation of Taylor
et al. [2008] that Frei and three campaign sites are moving
northwest at ≈7 mm/yr as part of the Shetland plate.

4. Discussion

[16] Estimates of current Antarctic ice mass loss from
GRACE gravity observations depend strongly on the post-
glacial rebound model corrected for. Chen et al. [2009]
estimate Antarctica to be losing ice at 190 Gt/yr (equiva-
lent to a global sea level rise of 0.52 mm/yr), which they
determine to be the gravity decrease observed by GRACE
(−112 Gt/yr) minus the gravity increase due to postglacial
rebound (+78 Gt/yr). If Chen et al. [2009] were to instead
correct for the model of Paulson et al. [2007], then they

Figure 3. Observations of horizontal velocity and two‐dimensional 95% confidence limits. The color of each ellipse and
site name designate the category to which the site is assigned: (black) on the Antarctic plate and moving insignificantly in
glacial isostatic adjustment, (red) on the Antarctic plate but moving in glacial isostatic adjustment, (brown) on the Shetland
plate. Earthquakes with body or moment magnitude greater than 5.2 from 1964 to 1995 are from Engdahl et al. [1998].
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would estimate Antarctic ice loss to be 250 Gt/yr (global
sea level rise 0.69 mm/yr). (The model of Paulson et al.
[2007] consists of deglaciation history ICE‐5G and man-
tle viscosity profile VM2‐2.) The estimates of Antarctic ice
loss of Velicogna and Wahr [2006] (global sea level rise of
0.38 mm/yr), Horwath and Dietrich [2009] (0.30 mm/yr),
and Peltier [2009] (0.34 mm/yr) also depend on the post-
glacial rebound model corrected for.
[17] The Ellsworth mountains are rising at ≈5 ± 4 mm/yr,

as in the model of Peltier [2007], but ≈10 mm/yr slower
than in the model of Simon et al. [2010]. Substituting the
model of Peltier [2007] for that of Ivins and James [2005],
we infer less current ice loss (or more current ice gain) near
the south coast of Ronne ice shelf than do Chen et al. [2009]
and Horwath and Dietrich [2009].
[18] Using cosmogenic 10Be dating of exposure of the

trim line in the Heritage range, Ellsworth mountains, Bentley
et al. [2010] conclude that the ice sheet there thinned by 230
to 480 m since 15 ka and that 80% of this thinning occurred
since 8 ka. In the Weddell Sea model of Bentley et al. [2010]
ice loss near the Ellsworth mountains is 800 to 1200 m,
consistent with the 1000 to 1500 m ice loss in ICE‐5G
v3.1a.

5. Conclusion

[19] The Ellsworth mountains are rising at ≈5 ± 4 mm/yr
(95% confidence limits), as in the postglacial rebound model
of Peltier, but ≈10 mm/yr slower than in the model of Ivins
and James. Significant ice loss from the Ellsworth moun-
tains ended by 4 ka. Current ice loss there is less than
inferred from GRACE gravity observations in studies
assuming the model of Ivins and James [2005]. GPS observa-
tions of uplift in more places and GRACE observations of
gravity will distinguish between current ice loss and post-
glacial rebound elsewhere in Antarctica.
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